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Abstract

In this paper, we first briefly review the semi-analytical method [E.F. Toro, V.A. Titarev, Solution of the generalized
Riemann problem for advection–reaction equations, Proc. Roy. Soc. London 458 (2018) (2002) 271–281] for solving the
derivative Riemann problem for systems of hyperbolic conservation laws with source terms. Next, we generalize it to
hyperbolic systems for which the Riemann problem solution is not available. As an application example we implement
the new derivative Riemann solver in the high-order finite-volume ADER advection schemes. We provide numerical
examples for the compressible Euler equations in two space dimensions which illustrate robustness and high accuracy
of the resulting schemes.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Conventionally, the Riemann problem for a system of conservation laws is defined as the Cauchy prob-
lem with initial conditions consisting of two constant states separated by a discontinuity at the origin. As is
well known, the solution of such problem can then be used locally to construct upwind finite volume
numerical methods [6]. The required intercell numerical flux is obtained by a time-integral average of the
solution of the Riemann problem at the interface of a volume or element. In this manner, the conventional
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piece-wise constant data Riemann problem can be associated with a first-order numerical method, a Godu-
nov method [6]. A generalization of this approach results in second-order methods [1,10], whereby a piece-

wise linear data Riemann problem is posed and solved. This Riemann problem has become to be known as
the Generalized Riemann problem. A further generalization is to consider the Riemann problem for a sys-
tem of equations with source terms and arbitrary piece-wise smooth initial data [23]. In particular, the initial
conditions may consist of polynomials of arbitrary degree. Here we call such Riemann problem, the deriv-
ative Riemann problem, or DRP for short. The numerical fluxes resulting from the DRP give rise to the
high-order ADER-type schemes, e.g. [21,17,16,13,25,18,5].

The solution procedure for the DRP reported in [23] provides an approximation to the state variable
along the t-axis in the form of a Taylor time expansion, see also [9,2,11]. To build up this expansion,
the original DRP is reduced to a sequence of conventional Riemann problems for homogeneous advection
equations. The leading term of the expansion is computed as the Godunov state of the conventional non-
linear Riemann problem, whereas the evaluation of higher-order terms involves the solution of linearized
Riemann problems for spatial derivatives. Therefore, availability of an approximate-state Riemann solver
for the non-linear conventional Riemann problem is crucial for building up the approximate solution to the
DRP. Although exact or approximate-state Riemann solvers are available for a large variety of hyperbolic
systems of conservation laws [19,8], for complex non-linear systems they may become very complicated or
simply unavailable. It is therefore desirable to have a simple procedure for calculating the leading term of
the state expansion which would not necessarily require a detailed knowledge of the Riemann problem
solution.

The aim of the present paper is twofold. Firstly, we present a new method to compute the leading term of
the Taylor time expansion which does not require a Riemann solver for the non-linear system to be solved.
This method proceeds first to a non-linear evolution of the initial condition of a conventional Riemann
problem, followed by a simple linearization of the Riemann problem, which leads to closed-form solutions.
We illustrate the method by solving the DRP for the inviscid Burgers� equation with a source term. Sec-
ondly, we incorporate the new variant of the DRP solver into high order finite volume ADER methods
for hyperbolic systems. We assess the performance of the resulting schemes for a number of test problems
for the Euler equations and compare them with the existing ADER [18] and WENO [14] schemes.

The rest of the paper is organized as follows. In Section 2, we review the current DRP solver. In Section
3, we present a new procedure to compute the leading term and provide a numerical example to illustrate
its accuracy. In Section 4, we describe the application to the ADER approach. Numerical examples for
the two-dimensional compressible Euler equations are given in Section 5 and conclusions are drawn in
Section 6.
2. The derivative Riemann problem

2.1. The problem

The derivative Riemann problem or DRP for a hyperbolic system is the initial-value problem
otQþ oxFðQÞ ¼ Sðx; t;QÞ;

Qðx; 0Þ ¼
QLðxÞ if x < 0;

QRðxÞ if x > 0;

� 9=
; ð1Þ
where the initial states QL(x), QR(x) are two vectors, the components of which are smooth functions of
distance x. We introduce the notation DRPK to mean the derivative Riemann problem in which K repre-
sents the number of non-trivial spatial derivatives of the initial condition, K = max{KL,KR}, where KL and
KR are such that
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oðkÞx QLðxÞ � 0 8k > KL; 8x < 0 and oðkÞx QRðxÞ � 0 8k > KR; 8x > 0.
DRP0 means that all first (k = 1) and higher-order spatial derivatives of the initial condition for the DRP
away from the origin vanish identically; this case corresponds to the conventional piece-wise constant data
Riemann problem.

2.2. Solution methodology

Recall that the two initial states QL(x) and QR(x) are assumed to be smooth functions, for example Kth
order polynomials, defined respectively for x < 0 and for x > 0, with a discontinuity at x = 0. Away from
x = 0 we could use the Cauchy–Kowalewski method to construct a solution Q(x, t) to (1), provided that all
the smoothness assumptions of the Cauchy–Kowalewski theorem were met. Here we are interested in the
solution of DRPK, right at x = 0, where in fact the initial data may be discontinuous.

Fig. 1 illustrates the initial conditions of the DRPK and the information available at t = 0 at the origin
x = 0. The initial data is, in general, discontinuous at x = 0. Away from x = 0 the initial data is smooth,
with all spatial derivatives well defined and readily computed. At x = 0 we can define one-sided spatial
derivatives, so that at the interface x = 0 we have jumps in spatial derivatives. These jumps will form
the initial data for new (conventional) Riemann problems, as we shall explain below.

We seek a power series solution at x = 0 as a function QLR(t) of time t only. Formally, we write the
sought solution as
QLRðtÞ ¼ Qð0; 0þÞ þ
XK
k¼1

½oðkÞt Qð0; 0þÞ�
tk

k!
; ð2Þ
where 0þ � lim
t!0þ

t. The solution contains a leading termQ(0,0+) andhigher-order termswith coefficients deter-

mined by oðkÞt Qð0; 0þÞ. In what follows we describe a method to compute each of the terms of the series
expansion.

2.2.1. The leading term

The leading term Q(0,0+) in the expansion accounts for the first-instant interaction of the initial data via
the governing PDEs, which is realized solely by the boundary extrapolated values QL(0) and QR(0) in (1).
Therefore, the leading term Q(0,0+) is found from the similarity solution of the following DRP0:
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Information available in the DRPK for a scalar problem. The data states qL(x) and qR(x) are smooth functions away from x = 0
ve one-sided spatial derivatives at x = 0.
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otQþ oxFðQÞ ¼ 0;

Qðx; 0Þ ¼
QLð0Þ � lim

x!0�
QLðxÞ if x < 0;

QRð0Þ � lim
x!0þ

QRðxÞ if x > 0.

8<
:

9>>=
>>; ð3Þ
Here, the influence of the source term can be neglected. Denoting the similarity solution by D(0)(x/t), the
sought leading term is given by evaluating this solution along the t-axis, that is along x/t = 0, namely
Qð0; 0þÞ ¼ Dð0Þð0Þ. ð4Þ

The value D(0)(0) is commonly known as the Godunov state, as it is used in the numerical flux of the first-
order upwind scheme of Godunov [6]. In what follows we shall extend the use of this terminology to
mean the solution of conventional Riemann problems for spatial derivatives evaluated at x/t = 0. In
practice, a conventional Riemann solver, possibly approximate, is needed here to determine the leading
term.

2.2.2. Higher-order terms
To compute the higher-order terms in (2) we need to compute the coefficients, that is the partial deriv-

atives oðkÞt Qðx; tÞ at x = 0, t = 0+. If these were available on both sides of the initial discontinuity at x = 0,
then one could implement a fairly direct approach to the evaluation of the higher order terms. The method
presented below relies on the availability of all spatial derivatives rather than temporal derivatives away
from the interface, see Fig. 1.

In order to express all time derivatives as functions of space derivatives we apply the Cauchy–Kowalewski
method and use the fact that both the physical flux and source term are the functions of the vector of con-
servative variables. This yields the following expressions for time derivatives:
o
ðkÞ
t Qðx; tÞ ¼ PðkÞðoð0Þx Q; oð1Þx Q; . . . ; oðkÞx QÞ. ð5Þ
These time-partial derivatives at x = 0 for t>0 have a meaning if the spatial derivatives
oð0Þx Q; oð1Þx Q; . . . ; oðkÞx Q can be given a meaning at x = 0 for t > 0. For x < 0 and for x > 0 all spatial
derivatives
oðkÞx QLðxÞ; oðkÞx QRðxÞ; k ¼ 1; 2; . . . ;K
are defined and readily computed. At x = 0, however, we have the one-sided derivatives
oðkÞx QLð0Þ ¼ lim
x!0�

oðkÞx QLðxÞ

oðkÞx QRð0Þ ¼ lim
x!0þ

oðkÞx QRðxÞ

9>=
>; k ¼ 1; 2; . . . ;K
(see Fig. 1). We thus have a set of K pairs ðoðkÞx QLð0Þ; oðkÞx QRð0ÞÞ of constant vectors that could be used as
the initial condition for K conventional Riemann problems, if in addition we had a set of corresponding
evolution equations for the quantities oðkÞx Qðx; tÞ. The sought evolution equations can be easily constructed.
It can be verified that the quantity oðkÞx Qðx; tÞ obeys the following system of non-linear inhomogeneous evo-
lution equations:
otðoðkÞx Qðx; tÞÞ þ AðQÞoxðoðkÞx Qðx; tÞÞ ¼ Hk; ð6Þ
where the coefficient matrix A(Q) is precisely the Jacobian matrix of system (1). Eq. (6) is obtained by
manipulating derivatives of (1). The source term Hk on the right-hand side of (6)
Hk ¼ Hkðoð0Þx Qðx; tÞ; oð1Þx Qðx; tÞ; . . . ; oðkÞx Qðx; tÞÞ
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is a function of the spatial derivatives oðkÞx Qðx; tÞ, for k = 0,1, . . . ,K, and vanishes when the Jacobian
matrix A is constant and S ” 0, that is, when the original system in (1) is linear and homogeneous with
constant coefficients. In order to easily solve these evolution equations we perform two simplifications,
namely, we first neglect the source terms Hk and then we linearize the resulting homogeneous
equations.

Neglecting the effect of the source terms Hk is justified, as we only need oðkÞx Qðx; tÞ at the first-instant

interaction of left and right states. We thus have homogeneous non-linear systems for spatial derivatives.
Then we perform a linearization of the homogeneous systems about the leading term of the power series
expansion (2), that is the coefficient matrix is taken as the constant matrix
A
ð0Þ
LR ¼ AðQð0; 0þÞÞ.
Thus, in order to find the spatial derivatives at x = 0, t = 0+ we solve the following homogeneous, linearized

conventional Riemann problems
otðoðkÞx Qðx; tÞÞ þ A
ð0Þ
LRoxðo

ðkÞ
x Qðx; tÞÞ ¼ 0;

oðkÞx Qðx; 0Þ ¼
oðkÞx QLð0Þ; x < 0;

o
ðkÞ
x QRð0Þ; x > 0.

(
9>>=
>>; ð7Þ
Note that the (constant) Jacobian matrix A
ð0Þ
LR is the same coefficient matrix for all oðkÞx Qðx; tÞÞ and is eval-

uated only once, using the leading term of the expansion.
We denote the similarity solution of (7) by D(k)(x/t). In the computation of all higher order terms,

the solutions of the associated Riemann problems are analytic and the question of choosing a Riemann

solver does not arise. The relevant value at the interface is obtained by evaluating this vector at x/t = 0,
namely
oðkÞx Qð0; 0þÞÞ ¼ DðkÞð0Þ.
We call this value the Godunov state, in analogy to the interface state (4) associated with the leading term.
Having evolved all space derivatives at the interface x = 0 we form the time derivatives and finally define

the solution of the DRPK as the power series expansion
QLRðtÞ ¼ C0 þ C1t þ C2t2 þ � � � þ CKtK ; ð8Þ
where the coefficients are given by
Ck ¼
o
ðkÞ
t Qð0; 0þÞÞ

k!
. ð9Þ
2.2.3. Summary of the method

The solution of the derivative Riemann problem has the following steps:

� Step (I): The leading term

To compute the leading term one solves exactly or approximately the conventional Riemann problem (3)
to obtain the similarity solution D(0)(x/t). The leading term in then given by the Godunov state
Q(0,0+)) = D(0)(0).

� Step (II): Higher order terms

1. Time derivatives in terms of spatial derivatives

Use the Cauchy–Kowalewski method to express time derivatives oðkÞt Qðx; tÞ in terms of functions of
space derivatives as in (5).
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2. Evolution equations for derivatives

Construct evolution equations for spatial derivatives (6).
3. Riemann problems for spatial derivatives

Simplify (6) by neglecting source terms and linearizing the evolution equations. Then pose conven-
tional, homogeneous linearized Riemann problems for spatial derivatives (7).
Solve analytically these Riemann problems to obtain similarity solutions D(k)(x/t) and set
oðkÞx Qð0; 0þÞÞ ¼ DðkÞð0Þ.

� Step (III): Form the solution as the power series expansion (8) with the coefficients (9).
3. Riemann solvers for the leading term of DRP

Recall that the leading term of the Taylor series expansion (2), the Godunov state, will be the solution of a
non-linear problem, found by a non-linear Riemann solver, exact or approximate. As has already been men-
tioned, for complex non-linear systems such solvers are very complicated or simply unavailable. It is there-
fore desirable from the practical point of view to have a simple procedure for calculating the leading term of
the state expansion which would not require a detailed knowledge of the Riemann problem solution.

3.1. EVILIN Riemann solver

Here, we suggest that the recently-proposed EVILIN Riemann solver [20] be used to obtain the Godu-
nov state of the non-linear Riemann problem (2). The computation of the Godunov state by the EVILIN
Riemann solver consists of two main steps. The first step is to open the Riemann fan by using the general-
ized Multi-Stage (GMUSTA) Riemann solver [24]. The GMUSTA Riemann solver solves the local Rie-
mann problem (3) numerically rather than analytically by means of a simple first-order scheme applying
transmissive boundary conditions at each local time step. This is equivalent to evolving in time the initial
data QL(0), QR(0) via the governing equations. In the second step one applies a linearized Riemann solver
on the evolved initial data obtained from the GMUSTA procedure giving a close-form expression for the
Godunov state.

Below we briefly outline the GMUSTA and EVILIN Riemann solvers. Assume that at the initial time
t = 0 we know the left and right initial data values QL(0), QR(0) of the Riemann problem (3). We introduce
a local spatial domain and the corresponding mesh with 2M cells: �M + 1 6 m 6M and cell size Dxloc. The
boundary between cells m = 0 and m = 1 corresponds to the interface position x = 0 in (3). Transmissive
boundary conditions are applied at the numerical boundaries x±M+1/2 on the grounds that the Riemann-
like data extends to ±1. We now want to solve this Riemann problem numerically on a given local mesh
and construct a sequence of evolved data statesQðlÞ

m , 0 6 l 6 k in such a way, that the final values adjacent to

the originQ
ðkÞ
0 ; Q

ðkÞ
1 are close to the sought Godunov state. Here k is the total number of local time steps, or

stages of the algorithm.
In short, the GMUSTA local time marching for m = �M + 1, . . . ,M is organized as follows:
Qðlþ1Þ
m ¼ QðlÞ

m � Dtloc
Dxloc

F
ðlÞ
mþ1=2 � F

ðlÞ
m�1=2

� �
; F

ðlÞ
mþ1=2 ¼ FGFðQðlÞ

m ;Q
ðlÞ
mþ1Þ. ð10Þ
Here FGF is the monotone first order GFORCE numerical flux [24] which is the upwind generalization of
the centred FORCE flux [19] and is given by:
FGF ¼ XlocF
LW þ ð1� XlocÞFLF; Xloc ¼

1

1þ Cloc

; ð11Þ
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where FLW and FLF are the centred Lax–Wendroff and Lax–Friedrichs fluxes, respectively. The local
Courant number coefficient 0 < Cloc < 1 is prescribed by the user. Since the linear stability limit of the
GFORCE scheme is unity, we typically take Cloc = 0.9. The local time step Dtloc is computed as
Dtloc = Dxloc/Smax and is then used in the time update and for evaluation FLW and FLF. Here Smax is
the speed of the fastest wave in the local solution. The local cell size Dxloc can be chosen arbitrary
due to the self-similar structure of the solution of the conventional Riemann problem. For example,
one could take Dxloc ” 1 or Dxloc ” Dx.

We remark that although expression (11) involves centred fluxes, the resulting GFORCE flux is upwind
due to the fact that the non-linear weight Xloc in (11) depends on the local wave speed. We remark that in
the special case of the linear constant coefficient equation the GFORCE flux is identical to the Godunov
upwind flux.

The time marching procedure is stopped when the desired number of stages k is reached. At the final
stage we have a pair of values adjacent to the interface position. For the construction of Godunov-type
advection schemes one needs a numerical flux at the origin, which for the outlined procedure is given
by
FGM
iþ1=2 ¼ F

ðkÞ
1=2 ¼ FGFðQðkÞ

0 ;Q
ðkÞ
1 Þ. ð12Þ
For the purpose of solving the derivative Riemann problem, however, we need the Godunov state as well.
In general, the states adjacent to the origin, namely Q

ðkÞ
0 ; Q

ðkÞ
1 are different. We now use a linearized Rie-

mann solver to resolve the discontinuity in Q at the origin resulting in the EVILIN Riemann solver [20]. To
this end we solve exactly the following linearized Riemann problem:
otQþ A1=2oxQ ¼ 0; A1=2 ¼ Að1
2
ðQðkÞ

0 þQ
ðkÞ
1 ÞÞ;

Qðx; 0Þ ¼
Q

ðkÞÞ
0 if x < 0;

Q
ðkÞÞ
1 if x > 0.

(
ð13Þ
We remark that conventional linearized Riemann solvers have two major deficiencies. Firstly, they give a
large unphysical jump in all flow variables near sonic points, a rarefaction shock, unless explicit entropy
fixes are enforced. This is due to the fact that linearized Riemann solvers do not open the Riemann fan
when the solution contains a sonic point and produce instead a rarefaction shock. Secondly, they cannot
handle the situation when the Riemann problem solution contains very strong rarefaction waves. These
problems do not occur for the EVILIN Riemann solver, which is essentially due to the fact that we apply
the linearized Riemann solver to evolved values rather than to the initial data. See [20] for more details and
numerical examples.

It can be shown numerically [24] that when the number of cells 2M and number of stages k are
large, the GMUSTA flux converges to the Godunov flux with the exact Riemann solver. Correspond-
ingly, the approximate Godunov state produced by the EVILIN solver (13) converges to the exact
Godunov state, even for non-linear systems with a complex wave pattern. For the linear constant coef-
ficient equations this property is exact, whereas for non-linear systems it can be verified by numerical
experiments.

We note that since the solution of the piece-wise constant Riemann problem (3) is self-similar, the value
of the cell size Dx used in the local time marching does not influence the resulting GMUSTA and EVILIN
solutions. For a given CFL number Cloc these solutions depend only on the number of stages k and domain
size 2M. Moreover, when M > k the transmissive boundary conditions do not affect the numerical solution
of (3) which in this case depends only on k and Cloc.
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3.2. Numerical example

As an example here we solve the following derivative Riemann problem for the inviscid inhomogeneous
Burgers� equation:
Fig. 2.
mesh.
otqþ oxð12 q2Þ ¼ e�q;

qðx; 0Þ ¼
qLðxÞ ¼ e�2ðx�1=5Þ2 if x < 0;

qRðxÞ ¼ 1
4
e�2ðxþ1=5Þ2 if x > 0.

( 9>=
>; ð14Þ
The main feature of the solution is a shock wave that emerges from the discontinuity at the origin and
accelerates towards the right side. Fig. 2 shows the global solution of (14) in the x–t plane, which was ob-
tained numerically using a finite-volume weighted essentially non-oscillatory scheme [14] on a very fine
mesh. We regard this as the exact solution and define an error by taking the difference between this accurate
numerical solution and our semi-analytical DRP solution (2).

Table 1 shows the variation of the error as function of the order of accuracy of the Taylor time expan-
sion for different times s using the exact Riemann solver for the leading term of the time expansion. As
expected, for sufficiently small output times the error rapidly decreases when the number of terms in the
expansion increases. For the last output time s = 0.2 the solution appears to be too far away from the initial
time and therefore the Taylor time expansion (2) is not accurate anymore.

Tables 2 and 3 show the convergence study for the case when the EVILIN Riemann solver is used for the
leading term of the time expansion. These tables illustrate the influence of the number of cells 2M and
stages k in the local time marching (10) on the accuracy of the resulting Taylor time expansion (2). As ex-
pected, the size of the error is defined by the accuracy of the leading term. That is the error committed in
computing the leading term of the state expansion (2) by using the EVILIN approximation (13) cannot be
recovered by high order terms. From the tables it is clear that this error crucially depends on the number of
stages k and cells 2M in the GMUSTA time marching (10). As M and k grow, the leading term obtained by
EVILIN approximation approaches the exact one and the EVILIN solution converges to the one obtained
by using the exact Riemann solver, see Table 3.
Contour plot of the numerical solution of DRP problem (14) on the x–t plane, obtained by a WENO scheme [14] on a very fine



Table 1
Convergence study for the Derivative Riemann problem (14) for different output times t and different orders of accuracy

Order t = 0.01 t = 0.05 t = 0.1 t = 0.2

1 0.2918 · 10�2 0.1573 · 10�1 0.3300 · 10�1 0.6580 · 10�1

2 0.7381 · 10�4 0.1513 · 10�2 0.4560 · 10�2 0.8916 · 10�2

3 0.3479 · 10�5 0.4197 · 10�3 0.3168 · 10�2 0.2200 · 10�1

4 0.2452 · 10�7 0.1830 · 10�4 0.3356 · 10�3 0.6032 · 10�2

5 0.1389 · 10�8 0.3843 · 10�5 0.1042 · 10�3 0.2331 · 10�2

6 0.3771 · 10�10 0.6143 · 10�6 0.3840 · 10�4 0.2234 · 10�2

The exact Riemann solver is used.

Table 2
Convergence study for the derivative Riemann problem (14) for different output times t and different orders of accuracy

Order t = 0.01 t = 0.05 t = 0.1 t = 0.2

1 0.3097 · 10�2 0.9719 · 10�2 0.2699 · 10�1 0.5979 · 10�1

2 0.5873 · 10�2 0.4161 · 10�2 0.7710 · 10�3 0.4269 · 10�2

3 0.5949 · 10�2 0.6063 · 10�2 0.8381 · 10�2 0.2617 · 10�1

4 0.5946 · 10�2 0.5633 · 10�2 0.4936 · 10�2 0.1385 · 10�2

5 0.5947 · 10�2 0.5647 · 10�2 0.5165 · 10�2 0.2269 · 10�2

6 0.5946 · 10�2 0.5651 · 10�2 0.5303 · 10�2 0.6708 · 10�2

The EVILIN Riemann solver with M = 1 and k = 2 is used for the leading term.

Table 3
Convergence study for the Derivative Riemann problem (14) for different output times t and different order of accuracy

Order t = 0.01 t = 0.05 t = 0.1 t = 0.2

1 0.2918 · 10�2 0.1573 · 10�1 0.3300 · 10�1 0.6580 · 10�1

2 0.7381 · 10�4 0.1512 · 10�2 0.4560 · 10�2 0.8916 · 10�2

3 0.3479 · 10�5 0.4197 · 10�3 0.3168 · 10�2 0.2200 · 10�1

4 0.2452 · 10�7 0.1830 · 10�4 0.3356 · 10�3 0.6032 · 10�2

5 0.1389 · 10�8 0.3843 · 10�5 0.1042 · 10�3 0.2331 · 10�2

6 0.3783 · 10�10 0.6143 · 10�6 0.3840 · 10�4 0.2234 · 10�2

The EVILIN Riemann solver with M = 3 and k = 12 is used for the leading term.
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4. Use of the DRP in the ADER approach

The DRP Riemann solver described in the previous sections can be used to construct very high-order
numerical ADER-type fluxes to be used in ADER and ADER-DG schemes. For simplicity, in this section
we review the use of the DRP solver for the construction of ADER schemes as applied to the one-dimen-
sional homogeneous systems only [17]. Extension to multiple space dimensions and source terms is straight-
forward and can be found in [25,18].

Consider a hyperbolic system in conservation form given by
otQþ oxFðQÞ ¼ 0 ð15Þ
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along with initial and boundary conditions. Here Q is the vector of unknown conservative variables and
F(Q) is the physical flux vector. Integrating (15) over a space–time control volume in x–t space
[xi�1/2,xi+1/2] · [tn, tn+1] of dimensions Dx = xi+1/2 � xi�1/2, Dt = tn+1 � tn, we obtain the following one-step
finite-volume scheme:
Qnþ1
i ¼ Qn

i þ
Dt
Dx

ðFi�1=2 � Fiþ1=2Þ. ð16Þ
HereQn
i is the cell average of the solution at time level tn and Fi+1/2 is the time average of the physical flux at

cell interface xi+1/2 term:
Qn
i ¼

1

Dx

Z xiþ1=2

xi�1=2

Qðx; tnÞdx; Fiþ1=2 ¼
1

Dt

Z tnþ1

tn
FðQðxiþ1=2; tÞÞdt. ð17Þ
The first step in the ADER algorithm is the reconstruction of point-wise values of the solution
from cell averages at t = tn via high-order polynomials. Use of a fixed stencil for the reconstruction
leads to linear ADER schemes which are, in accordance with Godunov�s theorem [6], will produce
spurious oscillations near discontinuities and steep gradients of the solution. To avoid oscillations
the adaptive weighted essentially non-oscillatory (WENO) reconstruction technique is used leading
to non-linear ADER schemes. For a detailed description of this technique see [3,14] and references
therein. We remark that for the rth order accurate scheme (in time and space) the reconstruction poly-
nomials must be of (r � 1)th order, e.g. for third order schemes we use piece-wise parabolic recon-
struction and so on.

After the reconstruction step the conservative variables in each cell are represented by vectors pi(x) of
polynomials. Then at each cell interface we can pose the following derivative Riemann problem:
otQþ oxFðQÞ ¼ 0;

Qðx; 0Þ ¼
QLðxÞ ¼ piðxÞ; x < xiþ1=2;

QRðxÞ ¼ piþ1ðxÞ; x > xiþ1=2.

� ð18Þ
Obviously, the initial-boundary problem (18) is exactly the Derivative Riemann problem (1). Therefore, in
order to obtain an approximate solution for the interface state Q(xi+1/2,s), where s is local time s = t � tn,
we apply the solution procedure outlined above and obtain the solution in the form of the temporal poly-
nomial (2).

Two options now exist to evaluate the numerical flux depending on the way we evaluate the Godunov
state of (3). If a conventional approximate-state Riemann solver for the Riemann problem (3) is available
we use the state-expansion ADER [17]. We insert the approximate state Q(s) into the definition of the
numerical flux (17) and then use an appropriate rth-order accurate quadrature for time integration:
Fiþ1=2 ¼
XKl

l¼0

FðQðxiþ1=2; alDtÞÞxl. ð19Þ
Here al and xl are properly scaled nodes and weights of the rule and Kl is the number of nodes.
When a conventional approximate-state Riemann solver is not available, we use the EVILIN Riemann

solver to obtain the leading term of the state expansion (2). Numerical experiments show that in this case
the best results are obtained when the so-called flux-expansion ADER [18] is used. The main difference from
the state-expansion ADER is that we now seek a truncated Taylor time expansion of the physical flux at
xi+1/2:
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Fðxiþ1=2; sÞ ¼ Fðxiþ1=2; 0þÞ þ
Xr�1

k¼1

o
k

otk
Fðxiþ1=2; 0þÞ

� �
sk

k!
. ð20Þ
From (17) and (20) the numerical flux is now given by
Fiþ1=2 ¼ Fðxiþ1=2; 0þÞ þ
Xr�1

k¼1

ok

otk
Fðxiþ1=2; 0þÞ

� �
Dtk

ðk þ 1Þ! . ð21Þ
The leading term F(xi+1/2,0+) accounts for the first interaction of left and right boundary extrapolated
values and is the GMUSTA flux (12). Other options include the use of conventional upwind fluxes, see
[18] for details. The remaining higher order time derivatives of the flux in (21) are expressed via time
derivatives of the intercell state Q(xi+1/2,0+), which are known from (1). The leading term Q(0,0+) is
now given by the EVILIN Riemann solver (13). No numerical quadrature is then required to compute
the numerical flux.

An important issue is the choice of parameters M and k in the local GMUSTA time marching (10). In
general, we observe that convergence of the EVILIN state to the exact Godunov state is obtained only
when M,k! 1. However, practical experience suggests that for designing numerical methods in most of
the cases the choice M = 1 and k = 2 in the GMUSTA time marching (10) gives numerical results that
are comparable with those from the most accurate of fluxes, namely, the first-order Godunov upwind flux
used in conjunction with the exact Riemann solver. See [24] for a more detailed discussion of the choice of
M and k. Therefore, for the rest of the paper we use these values in ADER schemes.

The solution is advanced in time by updating the cell averages according to the one-step formula
(16).
5. Application to the Euler equations

In this section, we show some results of the ADER schemes with the new EVILIN-based variant of the
DRP solver. We denote the corresponding schemes as ADER-GM schemes. We compare the performance
of the new ADER-GM schemes with that of the existing state-expansion ADER-AD schemes from [18] and
the state-of-the art finite-volume WENO schemes [14]. For brevity, we consider only schemes with piece-
wise parabolic (r = 3) polynomials. The resulting schemes (ADER-AD, ADER-GM, WENO) are of fifth
order spatial accuracy and third order temporal accuracy. Since the reconstruction step is essentially the
same for all methods, the difference in accuracy can result only from the temporal discretization and the
numerical fluxes. The ADER schemes use the DRP solver to obtain the numerical flux, whereas the WENO
scheme uses the Rusanov-type numerical flux [12] as the building block and third-order TVD RK method
[15] for the temporal update.

In all numerical examples we solve the two-dimensional compressible Euler equations of the form
o

ot
Qþ o

ox
FðQÞ þ o

oy
GðQÞ ¼ 0;
with
Q ¼

q

qu

qv

0
BBB@

1
CCCA; F ¼ Quþ

0

p

0

0
BBB@

1
CCCA; G ¼ Qvþ

0

0

p

0
BBB@

1
CCCA; ð22Þ
E pu pv
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p ¼ ðc� 1ÞðE � 1

2
qðu2 þ v2ÞÞ.
Here q, u, v, p and E are density, components of velocity in the x and y coordinate directions, pressure and
total energy, respectively; c is the ratio of specific heats. We use c = 1.4 throughout.

5.1. Two-dimensional vortex evolution problem

We solve the two-dimensional Euler equations in the square domain [�5 : 5] · [�5 : 5] with periodic
boundary conditions. The initial condition corresponds to a smooth vortex placed at the origin and is de-
fined as the following isentropic perturbation to the uniform flow of unit values of primitive variables [14]:
u ¼ 1� e
2p

e
1
2ð1�r2Þy; v ¼ 1þ e

2p
e
1
2ð1�r2Þx; T ¼ 1� ðc� 1Þe2

8cp2
eð1�r2Þ;

p
qc

¼ 1; ð23Þ
where r2 = x2 + y2 and the vortex strength is e = 5. The exact solution is a vortex movement with a constant
velocity at 45o to the Cartesian mesh lines. We compute the numerical solution at the output time t = 20 for
which the vortex returns to the initial position. We use Ccfl = 0.45 for all runs.

Table 4 shows the convergence study for all schemes. We present errors and convergence rates in L1 and
L1 norms for cell averages of density. Firstly, we observe that both ADER schemes achieve approximately
fifth order of accuracy. The new ADER-GM scheme is only slightly less accurate than the ADER-AD
scheme. Secondly, we see that both ADER schemes are more accurate than the WENO scheme by a factor
between two and three. The observed difference in accuracy between ADER and WENO schemes can be
related to the more accurate time evolution method of the ADER approach as compared to the combina-
tion of the Rusanov flux and the TVD RK method in the WENO scheme.

5.2. Double Mach reflection of a strong shock

The double Mach reflection problem [26] is a standard test problem for testing robustness and accuracy
of advection schemes. The setup of the problem, initial conditions and description of the flow physics can
be found in [26]. The problem has been studied intensively in recent years, see e.g. [4,14] and references
therein. The results of the conventional flux-expansion ADER schemes with the exact Riemann solver,
4
y convergence study for the vortex evolution problem (23) at the output time t = 20

d Mesh L1 error L1 order L1 error L1 order

3-AD [18] 25 · 25 9.71 · 10�2 5.92 · 0�1

50 · 50 1.30 · 10�2 2.90 3.94 · 10�2 3.91
100 · 100 4.14 · 10�4 4.97 1.54 · 10�3 4.68
200 · 200 9.77 · 10�6 5.41 5.23 · 10�5 4.88

3-GM, 25 · 25 1.01 · 10�1 6.29 · 10�1

ent paper 50 · 50 1.42 · 10�2 2.83 4.20 · 10�2 3.91
100 · 100 4.58 · 10�4 4.96 1.63 · 10�3 4.69
200 · 200 9.97 · 10�6 5.52 5.15 · 10�5 4.98

[14] 25 · 25 1.78 · 10� 1 1.12
50 · 50 2.05 · 10�2 3.11 8.17 · 10�2 3.78
100 · 100 7.01 · 10�4 4.87 4.44 · 10�3 4.20
200 · 200 3.17 · 10�5 4.47 1.78 · 10�4 4.64

0.45 is used for all schemes.



Y

0

0.2

0.4

0.6

0.8

1

X
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75

X
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75

X
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75

Y

0

0.2

0.4

0.6

0.8

1

Y

0

0.2

0.4

0.6

0.8

1

Fig. 3. Density convergence study for the double Mach reflection problem. Meshes: 240 · 60 cells (top), 480 · 120 cells (middle) and
960 · 240 cells (bottom). 30 contour lines from 2 to 22.

162 E.F. Toro, V.A. Titarev / Journal of Computational Physics 212 (2006) 150–165
HLL [7] and HLLC [22] Riemann solvers can be found in [18] for a sequence of meshes and are not shown
here. Figs. 3 and 4 show numerical results of the new ADER3-GM scheme for three meshes: 240 · 60,
480 · 120 and 960 · 240. We see that the scheme produces the flow pattern generally accepted in the exist-
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ing literature as correct. All discontinuities are well resolved and correctly positioned. The overall accuracy
of our new ADER3-GM scheme compares well with that of the WENO scheme [14] and conventional state-
expansion ADER schemes [18].
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We remark that the resolution of delicate flow features, such as slip surfaces and the jet can be directly
related to the accuracy of the Riemann solver used in the scheme. In particular, complete Riemann solvers
with all waves in the Riemann problem solution, e.g. exact and HLLC Riemann solvers, give results supe-
rior to those of the incomplete ones, such as HLL and Rusanov solvers. Comparing our results with those
reported in [14,18], we observe that the accuracy of our new ADER-GM scheme is comparable with that of
the ADER-HLLC scheme and superior to the ADER-HLL and WENO schemes.
6. Concluding remarks

In this paper we have presented a modification of the solution procedure for the derivative Riemann
problem which does not require an approximate-state Riemann solver. Our new DRP solver extends very
high order upwind schemes to a large class of hyperbolic systems of conservation laws for which the Rie-
mann problem solution is not available. We implemented the new Derivative Riemann solver in the frame-
work of finite-volume ADER schemes in multiple space dimensions and applied the new schemes to the
compressible Euler equations of gas dynamics. The presented numerical results illustrate the very high or-
der of accuracy as well as the essentially non-oscillatory property of the ADER schemes based on the new
DRP solver.
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